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J .  Phys.: Condens. Matter 1 (1989) 5263-5274. Printed in the UK 

Fractional charge, spin and statistics of solitons in superfluid 
3He film 

G E Volovik and V M Yakovenko 
Landau Institute for Theoretical Physics, Kosygin Street 2, 117334 Moscow, USSR 

Received 13 January 1989 

Abstract. The topological Chern-Simons term with the parameter U = nn exists in the 
superfluid 3He-A thin film, where an integer parameter 11 may be odd or even depending 
on the thickness of the film. The particle like soliton in 3He-A film (so-called skyrmion) 
with integer topological charge Q has spin s = n Q h / 2  and obeys Fermi-Dirac quantum 
statistics at odd Q and n. The topological term in action leads to specific quantised Hall 
effect for spin current in 3He-A. In the planar phase of the 3He film the non-singular 477 
spin disclination has the fractional fermion charge i n  which corresponds to the fractional 
electric charge i e n  for the disclination in the planar state superconductor. The spin 
disclination in the 3 H e - A ~  film has both the fractional spin ahn and fractional charge i n .  

1. Introduction 

In two-dimensional systems with the unit-vector field d(x, y ,  t )  as the order parameter, 
the hydrodynamical action for d can contain the so called &term, or Chern-Simons 
term, So = ft8HHopf, where HHopf is the integer-valued Hopf index for d-field in (x, y ,  t )  
spacetime (Wilczek and Zee 1983). To preserve the unitarity of the exp(i8HHopf) it was 
suggested in Dzyaloshinskii et a /  (1988) that the parameter 8 must be n7t with integer 
n. This term is responsible both for spin and quantum statistics of topological objects 
of the field d in (x, y )  space, solitons, characterised by an integer-valued Pontryagin 
index 

1 n  

A permutation of two identical solitons with topological charges Q changes their 
linking number and therefore the value of the Hopf invariant by Q2. As a result the 
permutation changes the exponent exp(i8HHopf) by the factor (-l)@. This means that 
at odd yt the solitons with odd Q behave as fermions under permutation. Also under 
2n spin rotation of the d field of the soliton the exponent is multiplied by factor (-1)”Q 
which means that the spin of the soliton is s = finQ/2 in correspondence with the 
conventional relation between spin and statistics (Wilczek and Zee 1983). 

Such a term was recently proposed for two-dimensional uniaxial Heisenberg anti- 
ferromagnets (Dzyaloshinskii et a1 1988), where it was supposed that for Nee1 state of 
spins S on a lattice n = 2s. This means that in the case of spin-; on a lattice site the 
soliton with odd Q is a fermion. However the detailed calculations (see e.g. Haldane 
1988) showed that for conventional antiferromagnets this term is absent. This also 
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directly follows from the symmetry considerations: the 0-term violates the symmetry 
of the antiferromagnets, since it changes sign under time inversion. 

It was proposed (Volovik 1988a) that the 0-term should exist in the superfluid 3He- 
A film due to combination of the antiferromagnetic properties of the spin subsystem 
with ferromagnetic properties of the orbital subsystem of this quasi-two-dimensional 
condensed matter, since the corresponding breaking of the time and space inversion 
symmetry allows for the existence of such a term in the hydrodynamical action. 
However, the method used in Volovik (1988a) for calculation of the 0-value proved to 
be incorrect. 

Here we show that 8 = nn for the 3He-A film, where n is the number of the energy 
levels of transverse quantisation for the Fermi quasi-particles below the Fermi energy, 
i.e. the maximal n at which the nth transverse energy level n2n2/2a2, where a is the 
film thickness, is still less than the chemical potential p .  This n is roughly proportional 
to the film thickness a and plays the part of the number of families of fermions in the 
analogy with the particle physics. Thus the soliton with odd Q is a fermion at odd I I  

and a boson at even n. 
In the 3He-A film the unit vector I of the orbital ferromagnetism axis is fixed along 

the normal i to the plane (x,y) of the film, I = ki, while the unit vector d of the 
spin antiferromagnetism axis is free to rotate, since the spin-orbital interaction in the 
'He-A between d and I is negligibly small. Due to the symmetry of the vacuum state 
of this film the hydrodynamical action for the 3He-A may contain the following term, 
the Q-term in action, which is expressed in terms of d field through the auxilary 'gauge' 
field A,, ( p  = 0, 1,2) : 

The integrand in (1.2) is odd under time inversion symmetry ( t  -+ -t) and under 
the orbital rotation by angle n around the x axis (x -+ x, y + -y, z -+ -z,  this 
corresponds to the two-dimensional space parity; note also that the d-vector which is 
the vector in spin space is unaffected by this rotation), therefore the B-term does not 
exist in conventional antiferromagnets. In the 3He-A film the change of the sign of 
the integrand under time and space inversion transformations is compensated by the 
change of the I-vector direction into the opposite ( I  -+ -4. with the total S,, being 
invariant under these symmetry operations. 

The integrand in (1.2) is not invariant under the 'gauge' transformation 

while the total integral, the Hopf invariant describing the mapping of the three- 
dimensional spacetime (x,y,t) onto the sphere S2 of the unit vector d, is invariant 
under this transformation. The gauge corresponds to the spin rotations by arbitrary 
angle x(x,y,t) about axis d which do not change the physical state of the system and 
therefore should not change the hydrodynamical action. Since the gauge is related to 
the spin rotations the 0-term gives rise to the anomalous terms in the expressions for 
spin density and spin current density discussed in $3 and in the Appendix. 
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The gauge property of the integrand results in the following important consequence. 
The parameter 8 can not depend on the space and time coordinates, otherwise the 
whole integral depends on gauge. Therefore this parameter is fundamental for the 
3He-A film and should be constant in certain regions of external parameters, such as 
film thickness a, and abruptly change to another fundamental value at some critical a. 
This reminds us of the behaviour of the Hall conductivity oxy in the quantised Hall 
effect (QHE). Here it is shown ($2) that the 8-value is defined by the integer topological 
invariant N which characterises the momentum space topology of the Green function 
of the 3He-A film of finite thickness. The conservation of this invariant provides the 
constant value of 8 = n N / 2  at definite regions of the film thickness. In the simplest 
BCS model of the 3He-A film the topological invariant takes values N = 2n where n 
is the number of the energy levels of the transverse motion (along the normal to the 
film) below the Fermi level. 

I t  is also shown ($83 and 4) that the quantisation of the 8-parameter in the 3He-A 
film is directly coupled with the quantisation of the Hall conductivity in the analogue 
of QHE in the 3He-A film discussed in Volovik (1988b). Both have a discontinuity at 
the same critical values of the film thickness when the diabolical point of the energy 
spectrum of the Fermi quasi-particles intersects the Fermi level. 

In $5 we discuss the other possible superfluid phases in the 3He film: planar state 
and 3He-A, phase. In the planar phase of the 3He film, which combines the properties 
of spin and orbital antiferromagnets, the non-singular 471 spin disclination has the 
fractional fermion charge i n  which corresponds to the fractional electric charge ;en 
for the disclination in the planar state superconductor. The spin disclinations in the 
3He-A, film, which combines the properties of spin and orbital ferromagnets, have 
both the fractional spin $hn and fractional charge i n .  

2. Calculation of the topological term in action 

Here we employ the standard procedure used in quantum field theory (see, for example, 
Wen et al 1988) for the calculation of the topological mass term for the bosonic gauge 
field f i l l  (which describes the gradients of the 3He-A order parameter 6) interacting 
with the system of chiral fermions (Bogoliubov quasi-particles). For the quantum field 
theory description of superfluid 3He we follow the lectures by Kleinert (1978). 

The Bogoliubov fermions in 3He-A film contain four components: 

where SI =T,J denotes the projection of the 3He nuclear spin, and the antisymmetric 
metric spinor g,/, is introduced to provide the identical spinor properties for particle 
and hole components of x. The 4 x 4 matrix Hamiltonian for the Bogoliubov fermions is 
expressed in terms of the Pauli matrices 6' for 3He nuclear spin and the Pauli matrices 
r u  for the Bogoliubov isospin in the particle-hole v ,y t  space: 

Here p = (-i2y,-i2,), e@) = ( p 2  - p$) /2m and c = A/pF, where pF is the Fermi 
momentum and A is the gap in the quasi-particle energy spectrum on the Fermi circle 
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of the 3He-A film, i.e. at k: + k: = kc .  The quasi-particle energy spectrum which follows 
from (2.2) is 

E2(k , ,  k , )  = H 2  = .'(I?) i- C2k2. (2.3) 

The effective hydrodynamic action S{d(x,  y, t ) )  for the bosonic field d is obtained 
after the integration over the Fermi field x which gives: 

S(d(x,y, t ) )  = iTr  In G G-' = ic", - H 

T r = x t r =  ( 2 4 3  Jd 'kdwd'xdttr  
k.m 

where tr means the trace over both spin and Bogoliubov isospin indices; the factor 
compensates for the double summation caused by introduction of particles and holes 
in the system of the 3He particles. 

For the calculation of the topological term in action i t  is more convenient to 
use instead of the unit vector d field the spin rotation 2 x 2 matrix U(x,y,t) which 
corresponds to the rotation of the d field from some homogeneous field d = i 

d(x, y ,  t )  . d = 2 .  u-'(x, y, t)aU(x, y ,  t ) .  (2.5) 

Then after the unitary transformation of the Fermi field, -+ Ut,, the effective 
hydrodynamic action is expressed in terms of the gauge field 

S(A(x, y, t ) }  = iTr  In ?;(p,, - A,,) 

?; - l ( k , )  = k ,  - c (k ) r3  - C O ~ ( ~ \ . T ~  + k ,  T ~ ) .  

In what follows we shall omit the tilde accent on ?;. 
In terms of this gauge field the Hopf invariant (1.2) is 

(2.7) 

This may be seen directly by inserting R,, expressed in terms of the gradients of the d 
field and A, ,  which corresponds to the rotation about axis d : 

R, = -dA, + d x 2.d. (2.9) 

The topological term in (2.8) is obtained from the AAA and AdA terms of the 
expansion of S{A(x ,y , t ) } .  The triangle diagram gives for the cubic term AAA the 
following expression : 

3 
S3 = ;Tr 1 (G 1 { r7k,, 3G-' A.),) = bilVi d2x dt Q,$2$: (2.10) 
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where the calculation of the anticommutators {,>+ using the a3-dependence of G in 
(2.7) results in 

(2.1 1) 

Here G(A) means the dependence of G on the gap A with G(0) G ( 6  = 0). 
The two-vertex loop diagram for the ABA term gives 

- - - 1 d2x dt [b,,,.A(R$j.Q~l + Q;Bj,Qi) + c,,, ,~,Q~~?~,Q~] (2.12) 
2 

where 

1 
c,c,,j, = - t r x ~ c ? ~ ( ~ - I ~ d ~ ,  G-~GB,,G-~.  (2.13) 

The summation of two diagrams leads to the cancellation of the terms with bilaj, 
due to relation b,,,., = -b,,,lj,, which follows from the symmetry of the 3He-A under 
spin rotation about axis z ,  and due to the fact that the field R, is pure gauge field, i.e. 

(2.14) 

As a result these two diagrams produce the Hopf term H'lopf (see (2.8)) in the 

kw 
8 

f,,,. = a,,sz,. - d,,Q,, - a,, x a,, = 0. 

hydrodynamical action 

S = OHHopf 0 = nN/2  (2.15) 

where N is the momentum space topological invariant 

N = -  1 epi 1 dk, d k,  dcu tr GahJd G-I GB,\ G-I Gd,, G 24n2 
(2.16) 

This integer invariant describes the non-trivial mapping of the three-dimensional 
( k , w )  space into the space of the non-degenerate 4 x 4 matrices G and therefore the 
result (2.15) for O does not depend on the details of the system. This justifies the 
application of the BCS model for 3He-A: both 3He-A and its BCS model have the same 
topological structure for the Green function and therefore should give the same 6-term. 
According to Volovik (1988b) for the pure two-dimensional 3He-A this invariant is 
N = 2, since the spin-up and spin-down components of 3He-A give equal contributions 
to N ,  while for the BCS model of the 3He-A film of finite thickness each level of the 
transverse motion gives the same contribution to N, therefore one has N = 2n where n 
is the number of the energy levels in the film below the Fermi energy, which plays the 
part of the number of the families of fermions in particle physics. In the real 3He-A 
film the interaction between different transverse energy levels may be important and 
the even-integer N is given by general expression 

N = 1 1 ~r G B G - 1  A G ~ G - I  A WG-' (2.17) 
24n2 



5268 G E Volovik and V M Yakovenko 

where the Green function G,, also contains transverse-level indices 

G,A(k> = i ~ 4 n , l  - f , , , (kb' - c,,(k. z ) ( d ( x , y ,  t )  . a). (2.18) 

Only in the limit of the small interaction between the transverse energy levels 
does the invariant N coincide with the double number of the levels below the Fermi 
energy. However, in any case 0 = nn where n is odd or even depending on the film 
thickness, and abruptly changes at  some critical values of the film thickness when the 
diabolical points in the Fermi quasi-particle spectrum intersect the Fermi level (see 
Volovik 1988b). Note that in A ,  phase the topological invariant N may be odd leading 
to the parastatistics for the topological objects (see 95). 

Note also that there are no  technical difficulties in calculating the diagrams. As 
distinct from the relativistic quantum field theory all the diagrams are convergent at  
large momenta and no cut-off problem arises. On the other hand there are no  infrared 
singularities which are crucial for the properties of the bulk 3He-A due to zeros in the 
quasi-particle energy gap at  two points on the Fermi sphere: the quasi-particle energy 
in the 'He-A film, (2.3), has no  zeros due to quantisation of transverse motion. 

3. Analogue of quantum Hall effect for spin current 

To calculate spin density it is usually convenient to introduce an  external magnetic 
field H ( x ,  y ,  t )  and find the response on this field. This field produces the term iyaH 
in the Green function, which corresponds to the A,, component of the external SU(2) 
gauge field. In the same manner, to calculate the spin current density that follows from 
the existence of the anomalous &term in the hydrodynamical action it is convenient 
to introduce the components A, and A, of the gauge field. 

Therefore it is instructive to introduce the general external SU(2) gauge field Qyft 
with non-zero curvature f;At together with the spacetime dependence of the d field . It 
can be done in such a manner that the Green function G shall acquire the invariance 
under local SU(2) spin rotations of all the fields, 

The effective hydrodynamical action for and d may be again obtained by the 
spin rotation U of the d to a constant field 2. After this rotation we come to the 
same action and Green function for fermions as in (2.7), where the pure gauge field 
A = iU2U-I should be substituted by At'' = UAeX'Upl + iU2U-I. 

Now we may expand the effective action in series of Clip' in the same manner as 
previously but taking into account that 1:;' is non-zero. Then expressing U2U-l in 
terms of the gradients of the d one obtains the following anomalous part of the action 
for the two-dimensional 3He-A film in terms of QylXt and d which is invariant under 
the local SU(2) gauge transformation: 

(3.1) 

d and . 

s = s, ( Q y )  + S,(d) + s,, + Ssurf 

where SI (Q;{") is the Chern-Simons term for the external gauge field: 

The S,(d) is the Chern-Simons term for the d field 
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and the interaction of the external field with the order parameter in the anomalous 
part of action is as follows: 

S = 1 1 d2x dt [eL1"A(2,d - next I' x ci, (f:!t x d) + 2(2,d- Qyt x 6 ) .  (fy;' x 6)].(3.4) 
32n 

The surface term may be also useful, e.g. for the calculation of the total spin of the 
soliton (see Appendix) since far from the soliton the field A i  decreases slowly. Here we 
leave only the part which is responsible for the spin of soliton: 

1 "  

The above equations are useful for the calculation of different quantities. Here we 
are interested in the spin current response on the gradient of magnetic field, which 
is reminiscent of the response of the particle current on the electric field in QHE. We 
consider the homogeneous d = 2 field and consider the spin current j,', i.e. the current 
of the x-component of spin in the presence of magnetic field. To calculate this current 
one must leave only the terms that are linear both in !2: and in Qo = H ,  then the 
variation of ( 3 . 1 )  over !2,l gives 

For the general case of the film with finite thickness the factor in the response of 
spin current on the gradient of magnetic field is quantised in terms of the topological 
invariant N in (2.17): 

j,' = (N/32n) lLe , , ,d , (yHY)  (3.7) 

where N = 2n in the limit of small interaction of the n transverse energy levels below 
the Fermi energy. This spin current Q H E  may be also obtained in another way due to 
its relation with Q H E  in 'He-A for mass current. 

4. Spin current from the QHE for particle current 

The anomalous spin current may be found from the anomalous particle current if one 
uses the representation of the 'He-A in terms of two superfluid components with spin 
up and spin down (see the review by Leggett (1975)). In this representation the spins 
of the particles are perpendicular to the d-vector. The advantage of this picture of the 
'He-A is that the spin current is just the counterflow of two components, i h ( j l  - j L ) .  

According to Volovik (1988b), for each component there exists the analogue of 
the quantised Hall effect (QHE): in the applied gradient of the chemical potential, d p ,  
which for the electrically neutral liquid plays the part of the electric field, the transverse 
particle current appears with the quantised Hall conductivity oyJ, = n/4h:  

(4.1) 
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Here again the integer ri is the number of the energy levels of the particle motion 
in z direction below the Fermi energy, n depends on the film thickness a and is roughly 
proportional to a. As distinct from the conventional QHE in a two-dimensional system 
of electrons this is the anomalous QHE in the sense that it takes place without any 
magnetic field and is produced by the orbital ferromagnetism of the 3He-A, i.e. instead 
of the magnetic field direction the direction of the orbital momentum, I ,  defines the 
direction of the Hall current. In 3He-A the superfluid components have the same 
orbital momentum: It  = f+ = I .  The electric charge is not involved in (4.2) since we 
consider the current of particles instead of the electric current. 

In the applied magnetic field, which in neutral ’He liquid interacts with 3He nuclear 
spins only, the chemical potentials for the components split. If the magnetic field is 
directed along the spin quantisation axis then 

pT = p - $./H = p + $./If. (4.3) 

i t tQi -ji) = - ( n f i / l 6 ~ ~ ) e ” ~ E , : ~ ~ ~ H .  (4.4) 

As a result the current of the spin projection on the magnetic field arises: 

To write down the general vector form of the spin current one must take into 
account that the spin quantisation axis in two component representation of the ‘He-A 
is perpendicular to the d-vector. Therefore in the general expression for the spin current 
one must change H --f H ,  = H - d ( d .  H ) :  

(4.5) 

which coincides with (3.7). 
The quantisation of the spin current under the gradient of external magnetic field is 

better to observe in the oscillating regime of NMK. The possibility of using the powerful 
magnetic methods makes the measurement of the QHE on spin current in the ’He-A 
film more preferable than that on the mass current. 

j: , , ,  = - (nA/16~~)d’~E,7d~[H - d(H .d)] 

5. Fractional charge in the planar state 

In the ‘He film two superfluid phases are possible in equilibrium: 3He-A and a planar 
state (see ,e.g., Brusov and Popov 1981) .  Also the A, state should exist in a large 
applied magnetic field or possibly for the film on magnetic substrate. We first consider 
the anomalous properties of the planar state. 

In the two spin component representation (see the previous section) the planar 
state has two superfluid components with the opposite spin projections, sT = -sl = f, 
and also with the opposite orbital momenta: It = - I ,  = I .  Therefore the time inversion 
symmetry is not broken in this state; however, the symmetry of this phase allows for 
the response of particle current on the gradient of magnetic field. According to the 
results of the previous section this response should be quantised: 

(5.1) 
This points out that in the planar state there should be also the anomalous term 

in the hydrodynamical action with the quantised parameter due to the topological 
invariant in momentum space. One may expect the following term: 

j ’  = (j’ t +ji) = -(nj8~~)e””l,;.lc“~(H.s^)). 

s,, = ~ 1 d2x dt eP” B, F ,  , 
16n 
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where A,, is the gauge field corresponding to the spin rotation about axis ŝ  and B, is 
the U( l )  gauge field corresponding to the phase rotation of the order parameter, or 
the electromagnetic field in superconductors; a is the parameter to be quantised. 

The variation of (5.2) over Bi produces the particle current 

j ,  == (~/8n)e~’~t!j(i?kAo - d o A k )  (5.4) 

which fits (5.1) if a = n ( A ,  corresponds to ( H . 9 ) ) .  With this value of r one may find 
the density of particles 

p = 6 S / S B ,  = (n/87c)F,,. ( 5 . 5 )  

Though the above procedure for derivation of (5.5) is not quite correct the validity 
of this equation is confirmed by direct calculation of the particle density (5.5) from the 
expansion of p = iTrT3G in terms of the gradients of the order parameter. On the 
other hand the direct calculation of the term in the action of the type of equation (5.2) 
in the weak coupling approximation gives for this term the result different from (5 .2):  

s, = - ‘ 1 d2xdteo”(Boi?,A, + B , ~ , A ~ ) .  
8n 

( 5 . 2 ~ )  

The only difference from (5.2) is that this term in ( 5 . 2 ~ )  does not contain the time 
derivatives. This difference however does not influence the results (5.1) and (5.5) for 
particle current and particle density, obtained by variation of ( 5 . 2 ~ ) .  

The spatial integration of (5.5) leads to the fractional fermionic charge 

r d2x p = n Q / 2  
J 

for the non-singular disclination with topological charge 

(5.7) 

It is worthwhile noting that the momentum space topological invariant which is 
responsible for the quantisation of the parameter in the expressions for particle density 
and particle current in the planar state is 

For the planar phase one has f i  = 2n if the interaction between n transverse levels 
below the Fermi level is small enough and N = 0 contrary to the ‘He-A where N = 2n 
and A = 0. In terms of these two topological invariants in momentum space one may 
write the spin s and charge q of the soliton in general case of both superfluid phases: 

s = t i N Q / 4  q = efiQ/4. (5.9) 

The A, phase contains only one spin component with the Cooper pair spin 9 and 
orbital momentum 1. This phase is the combination of the spin and orbital ferromagnets. 
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The particle current and spin current coincide in this phase. The momentum space 
topological invariants for this state are J? = N = n. As a result, according to (5.9) 
the non-singular disclination with the topological charge Q in (5.7) has both fractional 
spin and fractional charge with the magnitudes twice less than in 'He-A and planar 
phase correspondingly : 

1 d2x p = nQ/4 d2x S = ntzQs^/4. (5.10) 

6. Discussion 

It is found that the quantum statistics of the solitons in 'He-A film essentially depends 
on the film thickness, abruptly changing at  some critical values of thickness. At the 
moment of transition between Fermi and Bose statistics the quasi-particle energy gap 
disappears, i.e. the system passes through the dissipative state, in a complete analogy 
with Q H E  (see Volovik 1988b for details). The topological 0-term in action, which 
is responsible for quantum statistics, also leads to the quantum Hall effect for spin 
current. 

The other superfluid phases in 3He films also may exhibit the quantisation of 
parameters, with fractional spin and fermionic charge. All these phases combine the 
properties of spin and orbital magnets in different ways resulting in different properties 
of topological objects and different types of QHE.  For example the spin disclination in (1) 

'He-A, which is spin antiferromagnet and orbital ferromagnet, has fractional spin but 
no fermionic charge; in (ii) planar phase, which is spin and orbital antiferromagnets, 
the corresponding spin disclination has the fractional fermionic charge without spin; 
in (iii) 'He-A, phase, which is the combination of spin and orbital ferromagnets, this 
spin disclination has both fractional spin and fractional charge. 

In the relation of the fractional charge and spin of the solitons the 'He film should 
not be unique. Among the magnets there should exist the quasi-two-dimensional 
electron systems where the spin ferro- or  antiferromagnetism is combined with the 
orbital ferro- or antiferromagnetism in such a way that the symmetry allows for either 
the 6-term in action and therefore fractional statistics of solitons or the fractional 
charge for topological objects. The possibility of existence of neutral objects obeying 
fractional statistics and charge-e bosons was proposed in the resonating-valence-bond 
state (see, e.g., Zou and Anderson 1988). The analogy between the ground states of 
the magnets and the fractional quantum Hall states (Laughlin 1983) with respect to 
fractional statistics was discussed in Kalmeyer and Laughlin (1987) and Arovas er al 
(1988). 

Also the three-dimensional magnetic structures can exist which have five- or 
four-dimensional topological terms in action (see, e.g., Witten 1983, Balachandran 
1986). This may give both the Fermi statistics and fractional electric charge for three- 
dimensional particle-like solitons in magnets and unconventional superconductors. 

Appendix. Anomalous spin density in 3He-A film 

The anomalous local spin density is obtained as response of the anomalous action, 
(3.1), on  the magnetic field H = ayt in the limit --f 0. If the surface term is not 
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important the variation of (3.3) gives for local spin density 

s ( x , y )  = 6S/6R;;Xt = (AN/32n) lkeI jkd ,d  x 8,d. (Al l  

This spin density is a derivative and therefore does not contribute to the total spin 
of the soliton. Therefore the spin of the soliton is defined completely by the surface 
terms or by the asymptotic behaviour of the gauge fields far from the soliton. However, 
the local spin density has remarkable property: it is directed along the local vector d ,  
which serves as a local axis of spin quantisation for excitations in 3He-A, and its value 
is proportional to the density (1 /4z)F,*  of the topological charge of the soliton, (1.1) .  
The integral of the spin projection on the quantisation axis means the total spin for 
internal observer, the observer who lives in the 3He-A vacuum. The integration of the 
spin projection over the soliton cross section is thus the spin of the soliton from the 
point of view of the internal observer 

s” = 1 d2x sd = f i N Q / 4  = (A/2x)8Q 

is thus the spin of the soliton from the point of view of the internal observer. This spin 
also satisfies the relation between spin and quantum statistics of the soliton. 

The same expression (Al)  for the local spin density may be obtained from the 
variation of the 0 term, (1.2). Alongside the gauge field A,, one may introduce the 
corresponding (2+1)-current J,‘ : 

J” = ~ s , , / J A , ,  = ( ~ 8 / 8 n ~ ) ( f ~ ) e ~ “ ” ~ , , ~ .  a , p  = 0. 643) 

Since the gauge is related to the spin rotations around the local axis d this current 
is related to the spin density projection on the local axis d :  s. d = J o .  

From the &term one may also obtain the total spin of the soliton including the 
surface contribution. According to the Noether theorem the spin density S and the 
spin current density j:pln, related by spin conservation law ZrS + Zrj:pln = 0, ( i  = 1,2), 
are obtained from the Lagrangian by space- and time-dependent spin rotation by solid 
angle 8 with subsequent differentiation of the Lagrangian by a,, = ?/ ,d .  

Under spin rotations the gauge field transforms as follows : 

A, ,  -i A,, - (d  - d ( x ) )  . ?,,8 F,,, -i F,,, + 2,,8 2, d - 2,8 . ?,,d. ( A 4 )  

Here an additional dependence on d ( a )  is introduced to eliminate the constant 
gauge field at infinity, since (1.2) for the Hopf invariant is valid only for the gauge field 
vanishing at infinity. This leads to the following spin density ( i  = 1,2,3) : 

S = -(A8/32x‘)e’”lk[(d- d ( z ) ) F , ,  + 2A12,4 

= s + (A8/32n’)e’’~Ik[d(x)F,, + 2?,(A,d)] 

where the first term s is the local spin in (Al) while the other is the contribution of 
the asymptotes. The integration of the second term over the soliton gives for the spin 
of the soliton 

S = 1 d’x S ( x , j )  = ( h d Q / 2 z ) d ( a )  
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in accordance with the relation between spin and statistics. 
Note that each part of the second term gives the half of the result in (A6). The first 

part comes from the gauge, while the second part is from the surface term in (3.5). In 
principle the total spin of the soliton comes from the surface term and corresponds to 
the half of the value in equation (A6). But according to Kivelson and Rokhsar (1988) 
the ‘natural’ statistics are those that eliminate the gauge forces between the solitons. 
The first part of the second term of (A5) is introduced simply to cancel the gauge 
interaction between the solitons. Together both parts of the second term produce the 
‘natural’ statistics corresponding to the spin f of the elementary soliton with Q = kl .  

References 

Arovas D P. Auerbach A and Haldane F D M 1988 Phxs .  Rei .  Letr. 60 531 
Balachandran A P 1986 Nuci. Phys. B 271 227 
Brusov P N and Popov V N 1981 Zh. E k s p .  Teor. Fi:. 80 1564 (Engl. Transl. 1981 Soi. Phy.%.-JETP 53 804) 
Dzyaloshinskii 1. Polyakov A and Wiegmann P 1988 Phys. Lett. 127A 112 
Haldane F D M 1988 Ph1.s. Rev. Len. 61 1029 
Laughlin R B 1983 Phys. Rer. Lett. 50 1395 
Leggett A J 1975 Rel;. Mod. Pkys. 47 331 
Kalmeyer V and Laughlin R B 1987 Pkys. Rec. Lett. 59 2095 
Kivelson S A and Rokshar D S 1988 Phj,s.  Rer. Lett. 61 2630 
Kleinert H 1978 Collectire Fieiti Theory of’ Superfluid f fd iL i t71 -3 ,  Lecturxs presrrired o r  The S i .~ teenth  S u m i w r  

Sckooi on The New Aspects of’ Suhnuc/enr Physics. Erice, 1978. Freieri Ltiiiersitiir Berlin Preprif i t  FUB- 
HEP 14,’78 

Volovik G E 1988a Phys. Scr.  38 321 
-1988b Zh.  E k s p .  Theor. Fiz.  94 123 
Wen X G and Zee A 1988 Phys.  Rer. Lerr. 61.1025 
Wilczek F and Zee A 1983 Phys. Rer. ,!,err. 51 2250 
Witten E 1983 N u c i .  P~IJS. B 223 422 
Zou Z and Anderson P W 1988 Phys. Rer. B 37 627 


